Paper Submission Registration Contacts European Federation of Corrosion International Corrosion Council Center for Chemical Process Safety Asociace Korozních Inženýrů, z.s. DECHEMA

Plenary Lectures

European Corrosion Medal Award lecture
Congress Hall, Monday, 4 September 2017, 8:45–9:20

Mário G. S. Ferreira

Department of Materials and Ceramic Engineering, Aveiro Institute of Materials, University of Aveiro, Portugal

Mario Ferreira has made contributions in a number of areas of corrosion, such as electronic structure of passive films, corrosion  in  concrete, galvanized steel, aluminium and magnesium alloys, paints, anodizing, biomaterials, atmospheric corrosion, hybrid sol-gel films, inhibitors, self-healing and nanostructured coatings, localized electrochemical techniques. He is Full Professor at University of Aveiro, heading the Department of Materials and Ceramic Engineering since 2011. His publications are in top journals that publish on corrosion. He is also co-author of 18 book chapters and 5 patents.  He has been extremely active in scientific societies, representing Portugal in the International Corrosion Council, participating in different working parties of the European Federation of Corrosion, and for 2 years a member of its Board of Administrators. Mario Ferreira received the “H.H. Uhlig Award” of Corrosion Division of The Electrochemical Society (2013), CAVALLARO Gold Medal, Univ. Ferrara / EFC (2014), Fellow of ISE (2017), Fellow of The Electrochemical Society (2017), European Corrosion Medal, EFC (2017), Engineers Association Award, Senior Adviser Member (2015).

Immobilization of active molecules in nanostructured materials for multifunctional coatings

Additives to coatings can confer them important functionalities. However, direct mixing of them with coating formulations can lead to important drawbacks decreasing other important properties of the coatings, making them inappropriate for certain applications. This could be the case with certain active molecules, which are able to inhibit corrosion, have anti-fouling properties, sense different stimuli and increase adhesion. Preferably the added molecules should be released along time and thus become active upon external triggers (pH, chlorides, temperature, UV, stress, etc.). In order to achieve the controlled release and avoid interference with the coatings the active molecules must be encapsulated in nano/micro-containers. Other properties as rheology and curing of the coatings need to be optimized in order to have an effective effect. Ecotoxicity is another aspect to be taken into account. The development of new nanocontainers for organic and inorganic corrosion inhibitors achieved is described, especially the most promising from industrial point of view, based on Layered Double Hydroxides (LDH). They were mainly used for AA 2024 alloy. Emphasis will be given to MBT as an ionic exchanger with both inhibitor and anti-fouling properties. The combination of different of these nanocontainers in the same coating system has proved to be effective to accomplish further functions as antifouling and sensing.


Marcel Pourbaix Award lecture
Congress Hall, Monday, 4 September 2017, 9:45–10:20

Christofer Leygraf

KTH Royal Institute of Technology, Sweden

During 30 years that have passed since his appointment as Professor of Corrosion Science at KTH Royal Institute of Technology in Stockholm, Sweden, Christofer Leygraf has founded and maintained a large research group that deals with a broad range of basic and applied aspects of atmospheric and aqueous corrosion. Sustainable activities have been developed to establish a more fundamental foundation of atmospheric corrosion, largely through cross-disciplinary interaction between scientists in physics, chemistry, materials science and environmental science. These efforts were recently summarized in the second edition of the book Atmospheric Corrosion (Wiley, 2016). Christofer Leygraf is an elected member of the Swedish Royal Academy of Sciences and Honorary professor at the University of Science and Technology, Beijing (China). He has received a number of international awards and distinctions, including the 2003 Herbert Uhlig Award (US), 2006 Khwarizmi International Award (Iran), 2007 Willis Rodney Whitney Award (US), 2009 U.R. Evans Award (UK) and the 2013 European Corrosion Medal (EFC).

Atmospheric Corrosion: Current Challenges in an Evolving Research Field

Atmospheric corrosion is probably the most complex form of corrosion. The reason is that three phases (atmosphere, aqueous, solid) and two interfaces (atmosphere/aqueous and aqueous/solid) act simultaneously. To extract more basic information on the physicochemical processes that govern atmospheric corrosion it is necessary to design and study model systems, which are simple enough for fundamental studies, yet complex enough to be relevant for practical purposes and applications. Due to international exposure programs, sophisticated laboratory experiments, developments of more advanced analytical techniques and advancements in computational modelling, our understanding of atmospheric corrosion has greatly increased. This Award address will highlight a few challenges from current studies in the author’s ongoing research activities in atmospheric corrosion, with a focus on copper. They include the design of model systems, corrosion monitoring under in situ conditions with extremely mass sensitive techniques, and computational first-principle efforts for extracting molecular information on vital aspects of atmospheric corrosion.


Plenary lecture
Forum Hall, Tuesday, 5 September 2017, 8:25–9:10

Ivan Cole

Commonwealth Scientific and Industrial Research Organisation, Australia

Professor Ivan Cole is current Professor and Director of the  Enhanced Capability Platform of Advanced Manufacturing and Fabrication at RMIT University in Melbourne, Australia. Prior to this, he spent 25 years at CSIRO where he held a range of leadership (up to Acting Chief) and research positions (up to Chief Research Scientists). In his career he has made major contributions to understanding building microclimate and its effect on durability, fundamental nature of atmospheric corrosion and the  role of droplets in controlling it, multi-scale modelling and virtual design, new coating development, sensors and vehicle health monitoring, nano sensors and autonomous discovery of materials.

Virtual Design, Robotic Discovery and High through Put Studies of Atmospheric and Aerospace Corrosion

We can now fabricate and control structures at the molecular level. This is dramatically increasing the range of functionalities and the effectiveness of those functions within our materials. However it also leads to massive increase in the number of design choices and thus demands new rapid methods to select the best molecular designs. This paper will outline new methods to both assess the likely performance of corrosion resistant materials and to rapidly select the optimum chemical and physical structures to assist in corrosion control. The emphasis will be on new corrosion inhibitors. Techniques that will be explored will include virtual design where a multi-scale model spanning scales from nano meters to continents is presented. This model allows the estimation of the life of an inhibited paint film as a function of both the molecular properties of the inhibiting molecule and the service profile of the aircraft. The use of high throughput and robotic electrochemical studies were up to 80 experiments are carried out simultaneously both to explore independently design alternatives and to feed into the virtual design system will be explored


Plenary lecture
Forum Hall, Wednesday, 6 September 2017, 8:45–9:30

Tetsuo Shoji

Tohoku University – Frontier Research Initiative, Japan

Tetsuo Shoji is a Professor of Tohoku University since 1986. He was a postdoctoral fellow working for Professor R. N. Parkins at the University of Newcastle Upon Tyne, UK, and a Visiting Professor of MIT. He served as the PI of various national and international programs such as the Center of Excellence Program on Physics and Chemistry of Fracture and Failure Prevention, the Co-Director both of CNRS LIA ELyT laboratory and the international Joint Laboratory of Tohoku University and USTB, and International cooperative research program of PEACE and POLIM; working on mechanics and mechanisms of SCC. He has received 20 national and 8 international awards including NACE W. R. Whitney Award, the Lee Hsun Award, Chinese Academy of Science and the Great Medal from CEFRACOR, France in 2016. He was appointed by the Prime Minister as a member of Science Council of Japan in 2011 for 6 years and was elected as a member of the Japan Engineering Academy.

Continuum and Atomic Scale Simulation of Stress Corrosion Cracking and Causality

In his talk, Professor Tetsuo Shoji will try to demonstrate to bridge a continuum approach and atomic scale simulation focusing on the crack tip area with multi-scale modeling. Stress and strain analysis by theoretical elastic-plastic stress field analysis and FEM, and quasi-continuum (FEM and molecular dynamics) and Quantum Chemical Molecular Dynamics. Role of stress and strain in SCC will be demonstrated in connection with materials chemical and physical properties.


Plenary lecture
Forum Hall, Thursday, 7 September 2017, 9:00–9:40

John R. Scully

Center for Electrochemical Science and Engineering, University of Virginia, USA

John R. Scully is Charles Henderson Chaired Professor of Materials Science and Engineering and co-director for Center for Electrochemical Science and Engineering at University of Virginia. He had appointments with the Naval Ship R&D center and Sandia National Labs prior to joining the faculty at UVa. Dr. Scully’s work is closely linked to technological advancements that improve the standards of living, safety, and the quality of life. His primary research interest is to understand the relationships between a material's structure and composition and properties related to environmental degradation, aging and life prediction. He is technical editor in chief of CORROSION. He has served on numerous government review boards, and for industries concerned with materials reliability, aging, and failure including either spent nuclear fuel engineered waste canisters, aircraft, and bolt failures for 5 different countries.

Needs, Gaps, and Opportunities for Better Design of Corrosion Resistant Materials

Alloys are often designed with properties other than corrosion resistance as a high priority, such as mechanical strength. In the past, alloys were seldom designed with an exclusive focus on optimization of corrosion resistance. When corrosion was a priority, trade-offs between optimization of one property and another often existed. Such beneficial elements are often discovered by trial and error and utilized successfully despite unknown or widely debated mechanisms often discovered by accident. A recent National Academy study pointed out that an ideal corrosion-resistant alloy formulated with corrosion in mind from the initial stages of integrated computational materials design could also take advantage of many other beneficial attributes.  Theory guided computational materials selection will be required. A primary challenge exists to connect the attributes defined feature space of an alloy with the subsequent properties. This connection requires that scientific principles are established between each feature or attributes and the subsequent property. However significant scientific needs, gaps, and opportunities must be addressed to improve the theory based design of emerging materials for improved corrosion resistance.